If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=456
We move all terms to the left:
x^2-(456)=0
a = 1; b = 0; c = -456;
Δ = b2-4ac
Δ = 02-4·1·(-456)
Δ = 1824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1824}=\sqrt{16*114}=\sqrt{16}*\sqrt{114}=4\sqrt{114}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{114}}{2*1}=\frac{0-4\sqrt{114}}{2} =-\frac{4\sqrt{114}}{2} =-2\sqrt{114} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{114}}{2*1}=\frac{0+4\sqrt{114}}{2} =\frac{4\sqrt{114}}{2} =2\sqrt{114} $
| ⦁ 8+4x–5+33–x=63 | | 4(-4k-4)=-9+6k+1 | | 5r2-2=2r | | -24=-6v+2(v-2) | | 3x+2x+(x+82.5)=180 | | 3p^2=10p-7 | | q+32=15 | | 16=-2u+4(u+2) | | 2z4z-9-7=166-46 | | F(x)=2x2-7x+10 | | 15–4x=-5 | | 4x-20=-180 | | 18*3-11+3z^2-5=180 | | 0=-5t(t-80) | | -12=3k | | -30=3n-5n-8 | | y=3−2 | | 12x²=60x–72 | | 5.3x+7.1=-3x+7 | | 76=9(-8-5a)+45a | | 3x-2*2=8 | | 12x²=60x–72* | | -3k-6=-8.4 | | 4-m/5=16 | | 4x-5=3x+é | | x+(-2)=-6.5 | | 7/20=a/20 | | 2m=2.4,m= | | -7+4n^2=74 | | -104=13n | | X=(Z-6)k | | –8+3d=4d |